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Abstract

The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolu-

tions with the general class of Gaussian functions is investigated. It can be described by

a three-dimensional, in general, complex vector parameter with the property of additivity

when composing convolutions. The diagonal representation of this class of quasiprobabilities

is connected with a generalization of the displaced Fock states in direction of squeezing.

The subclass with real vector parameter is considered more in detail. It is related to the

most important kinds of boson operator ordering. The properties of a specific set of discrete

excitations of squeezed coherent states are given.

1 Introduction

The representation of density operators by quasiprobabilities forms one of the bridges between

classical and quantum mechanics. Whereas the classical distributiop function is uniquely defined

and gives the probability density to find the system at the corresponding point of the phase space,

a quantum-mechanical distribution function over the phase space is uniquely defined only in rela-

tion to a certain operator ordering and does not possess all properties of a true probability density,

for example, positive definiteness or orthonormality of the involved states. The best compromise

between classical and quantum mechanics is given by the Wigner quasiprobability W(a,_*) in-

troduced by Wigner in 1932 [1] and corresponding to symmetrical (Weyl) ordering. However,

other quasiprobabilities are in use and sometimes advantageous as the coherent-state quasiprob-

ability Q(a, c_*), the Glauber-Sudarshan quasiprobability P(c_, (_*), or the one-parameter class of

.s-ordered quasiprobabilities ( -1 _< s _< +1 ) which linearly interpolates between the coherent-state

quasiprobability and the Glauber-Sudarshan quasiprobability with the Wigner quasiprobability

in its center [2, 3, 4]. The quasiprobabilities are auxiliary functions in analogy to the classical

distribution function and are appropriate for the convenient calculation of exl)ectation vahles of

operators being invariant quantities in quantum mechanics. Therefore, each of the quasiproba-

bilities must carry the complete information of the density operator and a reconstruction of the

density operator from the quasiprobability must be possible. We consider here the general three-

t)aramet.er class of quasiprobabilities obtainable by convolutions of the Wigner quasiprobability

with the total (:lass of normalized Gaussian functions of the phase-space variables and (:all this the

total Gaussian (:lass of quasiprobabilities. In particular, it contains the quasiprobabilities related

to standard and antistandard ordering of the canonical operators and the linear interpolation

between then].
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2 The displacement structure of the quasiprobabilities

A strong and important restriction to the form of quasiprobabilities over a phase space with the

topology of a plane results from the requirement that displacements of the whole system in the

phase plane ( Heisenberg-Weyl group ) must lead to correspondingly displaced quasiprobabilities

in analogy to classical mechanics. If the transition from the density operator 0 to a normalized

quasiprobability F(a, a*) is written by a transition operator T(a, a*) as follows

iF(a,a*) = (aT(a,a*)), _aa

i

_a. A a." = aae(.) A aim (a), (1)

then the requirement regarding displacements implies the following "displacement structure" of

the transition operators

= D(a,a*)T(O,O)(D(a,a*)) t,

1
= I, (T(a,a*)) = (T(0,0)) = -,

7r
(2)

where the displacement operator D(a, a*) is defined by

D(a,a*) =_ exp(aa t - a'a), [a,a t] = I, (3)

with a and a t as the boson annihilation and creation operator and with I as the unity operator.

This means that the transition operators T(a,a*) provide a phase-space decomposition of the

unity operator. The given trace of the transition operators is a consequence of the following

identity which can be proved for arbitrary operators A [5, 6]

2da A da* D(a,a*)A(D(a,a*)) t = rr(A)I. (4)

The reconstruction of the density operator O from the quasiprobability F(a, a*) can be made by

an operator T(a, a*) in the following way

O = rr da A da* F(a,a*)T(a,a*), (5)

under the condition

1(T(a,a*)T(_,_*) ) = 6(a- /3, a*- /3*). (6)

It can be proved that the operator T(a, a*) possesses the same "displacement structure" as the

operator T(a,a*) with all its consequences ( phase-space decomposition of the unity operator,

trace equal to 1/Tr, see [6] ).
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3 The three-parameter Gaussian class of quasiprobabi-

lities

The discussed restrictions from the displacement structure of the quasiprobabilities admit still a

rich variety of possible quasiprobabilities. We consider here the three-parameter class of quasiprob-

abilities Fr(a,o*) with the vector parameter r = (7"1,r2,r3) which can be obtained from the

Wigner quasiprobability W(c_,o*) - F0(o,a*), (0 - (0,0,0)), by the following convolutions

f(Vl,r2,r3) (O, OL* ) = mr,,T_,T3)(O,O')• w(o,_')

_ (_0 20 )w(_,o*),= g(T__3) 0o*' i b-o

with the normalized Gaussian functions g or their Fourier transforms

g(T_'_2'_) Oo* ' i O-a

7, 2

(7)

2 1
+ + }--_ v/__77rexp{ - -_(rl(a2 -o* ir2(a 2 a .2) r32oo*) ,

02

- exp{_(rl(O-_2 22 ) -ir2(_-_5_+ _)+r32_)},

2 2 2
---- r 1 -l-r 2 nt-r a. (8)

This total Gaussian class of quasiprobabilities with, in general, complex vector parameters r -

(r_, r2, ra) contains the class of s-ordered quasiprobabilities as the special case F(o,o,_)(a, o*) with

real r3 = -s. The subclass F(_,0,0)(o,o*) with real rl and -1 _< rl _< +1 is related to tile

linear interpolation between standard and antistandard ordering of powers of the canonical op-

erators Q and P that is considered more in detail in [6]. The connection between two arbitrary

quasiprobabilities with the vector parameters r and s is given by

Fr(a,-') = gr_8(.,.*)Fs(o, o*), (9)

and the reconstruction of the density operator 0 by

i0 = rr _do A do* Fr(o, c_*)T_r(o, c,*). (10)

An interesting subclass of the total Gaussian class of quasiprobabilities is given by the restriction

to real vector parameters r - (rl,r2,r3)) and by r 2 _< 1. The "diagonal representation" of this

subclass leads to a generalization of the displaced Fock states in direction of a kind of displaced

squeezed Fock states as we now will show.

4 Diagonal representation of the Gaussian class of quasi-

probabilities with real vector parameters

From the Fock-state representation of the operator T(0, 0) in Eq.(2) in connection with Eq.(1) one

obtains the following, in general, nondiagonal representation of the quasiprobabilities in displaced
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Fock states Jc_,n)

o_ oo

F(_,n') = _--_(mlT(0,0)ln)(_,nl_ln, m),
m----0 n=O

1 t

Ice, n) - D(e,,a*)[n)=-_ni.(a-c_'I)"la}.

oo 1
_<_lV(0,0)ln) = -,

71"
n_O

(11)

The s-ordered class of quasiprobabilities is diagonal in the representation by the displaced Fock

states according to ( s = -r3 )

2 1-/'_ (n,r_loIn,n). (12)
F(°'°'_3)(a' _*)- (1 + ra)Tr .=0 1 + r3

The more general Gaussian class of quasiprobabilities with real vector parameters r = (rl, r2, r3)

can be diagonalized in the following way ( proof is given in [6] )

n_ rt;F(""_2'"3)(n'n') - (1 + r)rr = 1 +

r _-- V/_,_+ri+/'i, 0 _</"3 _<1,-
r

/'1 -- i/'2

r -t- r3
I rl - it2a,n; r + r--_ /'

(13)

where we have introduced a set of discrete excitations of squeezed coherent states In, n; _) with a

complex squeezing parameter _ in the nonunitary approach as follows

1 /at-_*a) n= i
(3O

10,0;£) = (1-4-_*)_exp (--_at2),0)=(1+_*)_ Z (--1)m__12m).2mrrt, (14)
m =0

The states Io_,m;-_) and In, n; C) with opposite squeezing parameters _ are mutually orthonor-

malized and satisfy a completeness relation in the following way

co

Z tn, n; ()(n, n; -(I = I. (15)
n----O

In case of vanishing squeezing parameter _ = 0 the states In, n; C) become identical with the

displaced Fock states In, n)

In,,_;0) - D(n,n*)l,_) -I_,,<). (16)

Consider now the limiting case of maximal squeezing I_! = 1 within the states tc_, n; _'). If one

makes the transition to real variables q and p and to the canonical Hermitean operators Q and P

according to

q + ip . q - ip Q + iP a_ Q - iPa - a - a - - (17)
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then, in particular, oneobtains

q + ip, (2hTr)_
_- n;1 = D(q,P)--_n ! _-_ tq = O)

,n;-1 = I)(q,p) _,---_.j ]p = O)

= exp ( - i pq ]
2hi ( V/-h)nV_nW.( Q - ql)nlp)' (18)

where D(q, p) denotes the displacement operator in the representation by the real variables q and

p and ]q) and ]p) are the eigenstates of the operators Q and P, respectively, normalized in the

usual way by means of the delta functions with the scalar product _(q]p) = exp ((ipq)/h).

The states in Eq.(18) represent discrete sets of excitations of the states ]q) and ]p) in analogy to

the displaced Fock states 1_, n) as discrete sets of excitations of the coherent states 1o_).

The states ](_,n;() with 1(1 > 1 are well defined by Eq.(14) but they are not normalizable

in the usual sense or by means of the delta function. They are states of certain rigged Hilbert

spaces since their scalar products with itself does not exit but it exists the scalar product with

states from spaces of sufficiently well-behaved normalizable states that can be used for auxiliary

purposes, for example, for the formulation of completeness relations on contours of the complex

variable c_. In this connection we introduce the following terminology of normalizability of states:

1. normalizable ( scalar product of the state with itself exists meaning that they are states of

the usual Hilbert space; case 1(1 < 1 in Eq.(14) ),

2. weakly nonnormalizable ( states can be considered as limiting cases of normalizable states

or states of a certain rigged Hilbert space and can often be normalized with "neighbouring"

states by means of the delta function; case ](] = 1 in Eq.(14) ),

3. strongly nonnormalizable ( states cannot be considered as limiting cases of normalizable

states but they are states of more general rigged Hilbert spaces or spaces of linear functionals;

case ](1 > 1 in Eq.(14) ).

If one admits strongly nonnormalizable states in Eq.(13) in a formal way, then one may omit

the restriction to nonnegative values of r3/r. In the case r3 = 0 one has to do with weakly

nonnormalizable states corresponding to ]([ = 1 and both possible signs of the square root in

r = _ + r:22 are admissible leading to two possible representations of equal rank.

5 The sphere of the Gaussian class of quasiprobabilities

with real vector parameters

As the main class of quasiprobabilities, the Gaussian subclass of quasiprobabilities with real vector

parameter r - (rl, r2, r3) and with r _ _< 1 forms the interior plus surface of a three-dimensional
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spherewith the Wigner quasiprobability W(a, a*) in its center, the coherent-state quasiprobability

Q(a, a*) in the North pole, the Glauber-Sudarshan quasiprobability P(a, a*) in the South pole and

the quasiprobabilities F(cos 2_,sin 2_,0)(c_, a*) corresponding to standard or antistandard ordering of

the rotated canonical operators Q and P about an angle T around the Equator ( see fig. l in [6] ).

Whereas at the surface of this sphere the quasiprobabilities are representable as the expectation

values of transition operators of the dyadic form 1/Tr]a, 0; _)(a, 0;-_1 with squeezing parameters

±( fixed for each diagonal through the center of the sphere ( if we admit strongly nonnormalizable

states; in the other case this is only true for the upper hemisphere ), in the interior one has mixed

states of la, n; _)(a,n;-_1, (n = 0,..., oc) as transition operators. This is in a certain analogy to

the Poincar_ sphere of pure and mixed polarization states where the pure polarization states are

situated on the surface of this sphere ( right-handed and left-handed circular polarization at the

North and South pole and the different linear polarizations around the Equator in dependence

on the direction of linear polarization, elliptical polarizations on general surface points ) and tho

mixed polarizations in the interior of the sphere with the fully unpolarized state in the center.

6 Some representations of the states /3, n;

It is interesting to consider the properties of the states t/3, n; () itself by the calculation of different

representations and quasiprobabilities. These states comprise the squeezed coherent states as the

special case l/3,0;_'). We introduced these states in Eq.(14) ill a nonnormalized form. First, a

normalization factor call be calculated from the following scalar product ( see [6] )

= (o, CIO,, ;C)

= 1-¢_*] Zk]2(n-2k)[ 1 + (,'£*
k=0

(19)

The polynomials at the right-hand side of Eq.(19) do not belong, at least, to well-known polyno-

mials with a fixed abbreviation.

Next, we calculate the Bargmann representation of the nonnormalized states I/3, n; C) with the

following result of an analytic function of a*

f(_*) = <OIexp(c_*a)l¢/, n; ¢)

(1 + _£*)I- H,, 1 + __* _ 3.)2 1 ,
- v_. 2_--------7-(°_* -/_*) exp - _(ot* - + o_*/3 - _/3 ,

(20)

where H,_(z) denotes the Hermite polynomials in the usual way. For the "position"representation

one obtains

(ql_,n;C)

1 +_* 1+(_* h

_¢, Hn il-_)(l+_*)h q- (/3+/3")
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1 ex,,{(1 _(f_, _ w 1
\ _h ] vq=¢ _1 _ 2h q - (/z_+ _*') + (/_ /3") q [_2 /3.2- _ 4 '

(21)

and for tile "momentum" representation

(p13, n; <)

(-i) '_ ( 1-(* 1+¢¢* h
k +_ H,_ (1 +¢)(1-¢*)h p+i (/:_-fl*)

1+((" w 1 1-¢ 1 h .p(/3+ ) -/_*

rrh _+ exp 1+¢2h P +i (/3-/3") --z v/_ + 4 "

(22)

From Eqs.(20) and (19) one finds the coherent-state quasiprobability Q(a, a*) for the normal-

tzed states 1/3, n; ¢),,oT,,_. We give it only for the states 10, n; ¢)noT,_ because the transition to the

states I/_, n; ¢),_o_,,_ can be simply made by the substitutions a --+ c_ - _ and _t* --+ a* -3". The

result h)r [0, 7z; (),_o_,,_ is

Q( ")
1 (c_lO,n; C)<O,n; CIc_>

71- (o,_z;¢lo,n; ¢)

1(,/_,-_cc) '_,7, ----7-- _+¢¢* ]
1 -4-¢¢*c,.)

v/1-_¢*exp{- (cm*+<*c*2+_c_*2)}"re 2 (23)

By convolution of Q(c,,c_*) with 2/rcexp(2cm*)one obtains from Eq.(2a) the Wigner quasiprob-

ability for the normalized states 10, n; (.),_o_,,_ with the result

W(.,.*) =
(-1) '_

k----O k!2(n-2k}! <1+(_( ]

Z j ,_(n 1)' n]),_ 1+_¢*
j=O

exp { 2(c_ + Ca*)(a* + ¢*a)1--_-_ }. (24)

The transition from [0, n;_'},_o,,_ to Ifl, n;¢),,o_,,_ can be made again in Eq.(24) by the simple

substitutions a ---+ c_-/3 and c_* --_ c_*-/3". In figs.(1-6) we represent the Wigner quasiprobability

in its real representation W(q, p) with the normalization f dq A dpW(q,p) = 1 for the frst 6 states
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Fig. i Fig.2

|

Fig.4

Fig.5

Fig. l-6:

Wigner quasiprobability W(q. p) to states ]0, n; (,),,o_,,,
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]O,n; ¢),_o_,_, i.e. for n = 0, 1,...,5 , with the squeezing parameter ¢ = 40.5 and with h = 1. For

= -0.5 one obtains the same pictures only rotated about an angle _r/2.

Let us give here additionally the explicit expressions of three partial classes of quasiprobabilities

from the total Gaussian class for the normalized squeezed vacuum states 10, 0; _},o_m

2 i 1 -¢¢*F(q,o,o)(a,_*) = 7 (1 +r_)(1 - _¢*) - 2r,(¢- 4")

exp{ 2(_ + ¢c_*)(c_* + ¢*c_)+ r,(1- ¢¢*)(c_2 - a*2) }

2/ 1 --¢¢*F(o,,_,o)(C_,a') = 7 (l+r'_)(1-¢¢*)-i2r2(¢+¢*)

2/ 1 -¢¢,F(o,o,,3)(-,_') = 7 (_ +,._)(_-¢¢')+2,._(1+¢¢*)

f _ 2(.+¢..)(.- +c-) + - ¢c)--"/ (25)exp / (_ + _i)(a - ¢¢') + 2,-_(1+ ¢¢.) J

The modulus of the complex squeezing parameter ¢ determines the amount of squeezing whereas

the phase of the squeezing parameter ( determines the position of the squeezing axes. In particular,

the squeezing axes are parallel to the coordinate axes for real ¢ = 4". In this case the class of

quasiprobabilities F(_,0,0)(od, cF) simplifies. The squeezing axes are diagonal to the coordinate

axes for imaginary ¢ = -¢* and then the class of quasiprobabilities F(0#>0)(a, oF) simplifies.

The usually considered class of quasiprobabilities F(0,0#a)(a, oe*) contains the interesting value

of the parameter ra for which the denominator in the exponential function vanishes and the

quasiprobability becomes a singular function. This point depends on the modulus of the squeezing

parameter and is given by

J -I¢1 ,.;_ 1+ I¢1)F3 ing
1 + I¢l' ( ra - - 1 - I¢1 ' (26)

where the second solution given in brackets seems to be not of interest. For parameters ra less or

equal this singularity point the corresponding quasiprobabilities can be only considered as gen-

eralized functions. Recall that the quasiprobabilities for squeezed coherent states I/3, 0; () can be

obtained again from the quasiprobabilities for 10, 0; ¢) by the mentioned argument displacements.

Last, we found for the number representation of the states 10, n; ¢},_o_m

10,_; ¢),,o._ =
(v/1 - ¢¢*)'_+½

k!_(_-2k)! \1+_¢" ]

= t!(_

E¢¢ (-1)i2j V_/(n+n!2J)! ¢,
J=-[_]

+ j)!(n - 20! 4(1 + _'_') In + 2j).
(27)
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It containsonly evenor odd number states in dependenceon n as an even or odd number. For

large modulus of the squeezing parameter ( the resulting number distribution becomes relatively

broad and uniform over even or odd numbers. The transition from the states 10, n; (),_or,_ to the

displaced states I/3, n; (),_orr_ is here more complicated as in the case of the quasiprobabilities.

Generally, if an arbitrary state I_b) has the number representation

oo

I¢) = c.ln), (28)
n=0

then the displaced state D(/3,/3")1¢) has the number representation

D(/3,/3*)[_b) = exp (/3_/3*)2 /

2

{m'j_o} re!n! m-j-- .= j!(m-j)!(n-j)!/3 (

Cn

/3 Ln (/3/3)c. Ir )
m----O n=O

= exp (/3/3*) "(-/3*)=-mL=-m(/3/3*)cn Ira), (29)
2 m=O ,_=0

where L_(z) denotes the Laguerre polynomials in the usual way. This is a kind of discrete convo-

lution of the primary number representation.

7 Conclusion

We investigated the total Gaussian class of quasiprobabilities and its diagonal representation in

case of real vector parameters. Another interesting special case is given for real r3 and imaginary

rl and r_. It seems that this case may be treated in analogy to the usual s-parametrized class of

quasiprobabilities by transition to new boson operators via a Bogolyubov transformation. Some

points and proofs are given more in detail in [6] but some are new in the present paper, in

particular, all formulae of section 6 for the states I/3, n; () are given here for the first time.
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